Ветроэнергетика

Преобразовательная техника

Ветроэнергетика - это использование энергии ветра с целью получения энергии.
История использования энергии ветра
В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы. Толедо - 1526 г., Глочестер - 1542 г., Лондон - 1582 г., Париж - 1608 г., и др. Нидерландах большое количество ветряных мельниц откачивали воду с земель, ограждённых дамбами. Отвоёванные у моря земли использовались в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей.
Первая в мире ветроэлектростанция мощностью 100 кВт. была построена в 1932 году в Крыму.

Современные методы генерации электроэнергии из энергии ветра
Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где еще встречаются и двухлопастные. Были попытки построить ветрогенераторы так называемой ортогональной конструкции, т.е. с вертикальным расположением оси вращения. Считается, что они имеют преимущество в виде очень малой скорости ветра, необходимой для начала работы ветрогенератора. Главная проблема таких генераторов - механизм торможения. В силу этой и некоторых других технических проблем ортогональные ветроагрегаты не получили практического распространения в ветроэнергетике.
Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10-12 км. от берега (а иногда и дальше) строятся офшорные фермы. Башни ветрогенераторов устанавливают фундаменты из свай, забитых на глубину до 30 метров. Также могут использоваться и другие типы подводных фундаментов, а также плавающие основания.
В 2006 году сумарные мощности ветряной энергетики выросли во всём мире до 73 904 МВт. Бо́льшая часть установленных мощностей (69 % на 2005 год) сконцентрирована в Европе. В Германии, к примеру, 20 622 МВт. Страны Евросоюза в 2005 году вырабатывают из энергии ветра около 3 % потребляемой электроэнергии. В 2006 году ветряные электростанции Германии произвели 30,6 млрд кВт•ч. электроэнергии, что составляет 7 % от всей произведённой в Германии электроэнергии. Около 20 % электроэнергии в Дании вырабатывается из ветра. Индия в 2005 году получает из энергии ветра около 3 % всей электроэнергии.

Ветроэнергетика в России
Технический потенциал ветровой энергии России оценивается свыше 50 000 миллиардов кВт•ч/год. Экономический потенциал составляет примерно 260 млрд кВт•ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.
Установленная мощность ветровых электростанций в стране на 2006 год составляет около 15 МВт. Одна из самых больших ветроэлектростанций России (5,1 МВт) расположена в районе поселка Куликово Зеленоградского района Калининградской области. Среднегодовая выработка которой составляет около 6 млн кВт•ч.
На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт) среднегодовой выработкой более 3 млн кВт•ч, параллельно станции установлен ДВС вырабатывающий 30 % энергии установки. Также крупные ветроэлектростанции расположены у деревни Тюпкильды Туймазинского района респ. Башкортостан (2,2 МВт).
В Калмыкии в 20 км от Элисты размещена площадка Калмыцкой ВЭС планировавшейся мощностью в 22 МВт и годовой выработкой 53 млн кВт•ч, на 2006 на площадке установлена одна установка «Радуга» мощностью 1 МВт и выработкой от 3 до 5 млн кВт•ч.
В республике Коми вблизи Воркуты строится Заполярная ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1,5 МВт.
На острове Беринга Командорских островов действует ВЭС мощностью 1,2 МВт. В 1996 году в Цимлянском районе Ростовской области установлена Маркинская ВЭС мощностью 0,3 МВт. В Мурманске действует установка мощностью 0,2 МВт.
Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область, Морской ВЭС 30 МВт Карелия, Приморской ВЭС 30 МВт Приморский край, Магаданской ВЭС 30 МВт Магаданская область, Чуйской ВЭС 24 МВт Республика Алтай, Усть-Камчатской ВДЭС 16 МВт Камчатская область, Новиковской ВДЭС 10 МВт Республика Коми, Дагестанской ВЭС 6 МВт Дагестан, Анапской ВЭС 5 МВт Краснодарский край, Новороссийской ВЭС 5 МВт Краснодарский край и Валаамской ВЭС 4 МВт Карелия. Началось строительство «Морского ветропарка» в Калининградской области мощностью 50 МВт.
Исполняется «Программа развития ветроэнергетики РАО „ЕЭС России“». На первом этапе (2003—2005 г.) начаты работы по созданию многофункциональных энергетических комплексов (МЭК) на базе ветрогенераторов и двигателей внутреннего сгорания. На втором этапе будет создан опытный образец МЭТ в посёлке Тикси — ветрогенераторы мощностью 3 МВт и двигатели внутреннего сгорания.

Перспективы
Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Правительством Канады установлена цель к 2015 году производить 10% электроэнергии из энергии ветра. Германия планирует к 2020 году производить 20% электроэнергии из энергии ветра. Европейским Союзом установлена цель: к 2010 году установить 40 000 МВт. ветрогенераторов. В Испании к 2011 году будет установлено 20 000 МВт. ветрогенераторов.

Но
Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра, фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличаяется большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезе. Учитывая, что энергосистема сама имеет неоднородности энергонагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует ее дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать. Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25% от общей установленной мощности системы. Для России это будет показатель, близкий к 50000 – 55000 МВт.

Экономика малой ветроэнергетики
Применение ветрогенераторов в быту для обеспечения электричестовм малоцелесообразно из-за:
Высокой стоимости инвертора ~ 50% стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора в паралель))
• Высокой стоимости аккумуляторных батарей ~ 25% стоимости установки (используется в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)
• Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости во всей установкой. В настоящее время несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько нибудь значительную величину у основной массы производств, на фоне других затрат.ключевым для потребителя остаётся надёжность и стабильность электроснабжения.

Основными факторами приводящими к удорожанию энергии получаемой от ветрогенераторов являются:
• Необходимость получения эл.энергии промышленного качества ~ 220В 50 Гц (применяется инвертор)
• Необходимость автономной работы в течении некоторого времени (применяется аккумуляторы)
• Необходимость длительной бесперебойной работы потребителей (применяется дизель-генератор)
В настоящее время наиболее экономически целесообразно плучение с помошью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощю ТЭНов в тепло, для обогрева жилья и получения горячей воды.
Эта схема имеет несколько приемуществ:
• Отопление является основным энергопотребителем любого дома в России.
• Схема ветрогенератора и управляющей автоматики кардинально упрощается.
• Схема аватоматики может быть в самом простом случает построена на нескольких тепловых реле.
• В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.
• Потребление тепла не так требовательно к качеству и бесперебойности, температуру воздуха в помещении можно потдерживать в широких диапазаонах 19-25С - в бойлерах горячего водоснабжения -40-97С без ущерба для потребителей.

Экологические аспекты ветроэнергетики
Шум

Ветряные энергетические установки производят две разновидности шума:
• механический шум (шум от работы механических и электрических компонентов)
• аэродинамический шум (шум от взаимодействия ветрового потока с лопастями установки)

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.
Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов - 300 м.

Использование земли
Турбины занимают только 1% от всей территории ветряной фермы. На 99% площади фермы возможно заниматься сельским хозяйством или другой деятельностью, что и происходит в таких густонаселенных странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землей, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год.


Источник: материалы википедии